
ONLINE SEARCH ORTHOGONAL MATCHING PURSUIT

Alejandro J. Weinstein and Michael B. Wakin

Colorado School of Mines
Department of Electrical Engineering and Computer Science

1500 Illinois Street, Golden, CO 80401, USA

ABSTRACT

The recovery of a sparse signal x from y = Φx, where Φ is a
matrix with more columns than rows, is a task central to many
signal processing problems. In this paper we present a new
greedy algorithm to solve this type of problem. Our approach
leverages ideas from the field of online search on state spaces.
We adopt the “agent perspective” and consider the set of pos-
sible supports of x as the state space. Under this setup, find-
ing a solution is equivalent to finding a path from the empty
support set to the state whose support has both the desired
cardinality and the capacity to explain the observation vector
y. An empirical investigation on Compressive Sensing prob-
lems shows that this new approach outperforms the classic
greedy algorithm Orthogonal Matching Pursuit (OMP) while
maintaining a reasonable computational complexity.

Index Terms— Compressive Sensing, greedy algorithms,
Orthogonal Matching Pursuit (OMP), sparse approximation.

1. INTRODUCTION

Many areas of signal processing, including Compressive
Sensing, image inpainting and others, involve solving a sparse
approximation problem. This corresponds to solving a system
of equations y = Φx where the matrix Φ has more columns
than rows and x is a sparse vector. An important class of
methods for solving this problem are the so called greedy
algorithms, for which Orthogonal Matching Pursuit (OMP) is
one of the classic representatives [1].

It is possible to think of greedy algorithms as instances of
search problems. Karahanoğlu and Erdoğan [2] used the A*
search method, a well known heuristic search algorithm for
finding the shortest path between two nodes in a graph, to de-
sign a new greedy solver called A*OMP. This method stores
the solution as a tree, where each node represents an index
of the estimated support. At each iteration it selects, using a
heuristic based on the evolution of the norm of the residue,
which leaf node to expand. To avoid an exponential growing
of the candidate solutions, this tree is pruned by keeping a
relatively small number of leaves.

This work was partially supported by AFOSR grant FA9550-09-1-0465.

In this paper we present a new greedy algorithm for solv-
ing sparse approximation problems. Like A*OMP, it frames
the recovery of a sparse signal as a search instance. However,
instead of using A* search which involves a monolithic plan-
ning stage, we formulate the problem as an online search,
where the planning and execution stages are interleaved. This
allows us to achieve a performance significantly better than
OMP and similar to A*OMP while maintaining a reasonable
computational load. Our simulations confirm this recovery
performance with a computational speed 20× faster than
A*OMP and less than 2× slower than OMP.

2. PRELIMINARIES

We start this section by introducing some notation and defin-
ing the problem we wish to solve. Let x be a real K-sparse
vector of dimension N . That is, x ∈ RN with ‖x‖0 = K,
where ‖ · ‖0 denotes the number of non-zero elements of a
vector. Let the support of x be the index set supp(x) =
{i | x(i) 6= 0}. Let y = Φx, with Φ ∈ RM×N an M × N
full-rank matrix with M < N and y ∈ RM a measurement
or observation vector. Let φj denote column j of Φ, and we
assume that ‖φj‖2 = 1 for all j. For any index set Γ, let ΦΓ

be the M × |Γ| matrix corresponding to the columns of Φ in-
dexed by Γ, where |Γ| is the cardinality of the index set. We
are interested in finding x given y and Φ. Formally, we wish
to solve the non-convex optimization problem

x̂ = argmin
x∈RN

‖x‖0 s.t. Φx = y. (P0)

Although this problem is NP-hard, it is possible under appro-
priate conditions (which depend on the particular values of
N,M,K and Φ) to solve it using greedy methods [1].

2.1. Orthogonal Matching Pursuit

One of the classic greedy algorithms for solving this problem
is OMP, described in Algorithm 1. OMP is an iterative algo-
rithm that builds an estimate of the support of x by adding one
index to this set at a time. The algorithm starts with an empty
estimate Γ(0). It keeps a residue vector r, initially equal to
y, which corresponds to the component of y perpendicular to
the column span of ΦΓ. At each iteration, OMP computes

Algorithm 1 Orthogonal Matching Pursuit
input: Φ, y, stopping criterion

initialize: r(0) = y, Γ(0) = ∅, ` = 0
while not converged do

match: h = |ΦT r|
identify: Γ(`+1) = Γ(`) ∪ argmaxj |h(j)|
update: x`+1 = argminz: supp(z)⊆Γ(`+1) ‖y − Φz‖2

r`+1 = y − Φx`+1

` = `+ 1
end while

output: x̂ = x` = argminz: supp(z)⊆Γ(`) ‖y − Φz‖2

the correlation between the current residue and the columns
of Φ. The index of the column with the highest correlation is
added to the current estimate of the support. Using this new
support estimate a new residue is computed. The loop exits
when the stopping criterion is met, typically when the norm
of the residue is small enough.

We will later exploit the fact that in OMP the norm of the
residue vector r(`) decays exponentially [3, Sec. 3.1.2]. In
particular,

‖r(`)‖22 ≤ (1− δ(Φ))`‖y‖22, (1)

where δ(Φ) ∈ (0, 1) is the universal decay-factor of Φ de-

fined as δ(Φ) = infv max1≤j≤M
|φT

j v|
‖v‖22

. Thus, the norm of
the residue converges to 0. In fact, it must reach 0 in M or
fewer iterations, although a residue of 0 does not necessarily
imply that the solution is correct.

2.2. Online search

Search algorithms are methods that solve the problem of find-
ing a minimal cost path between a given pair of start and
goal states belonging to a state space [4]. The state space
can be described by a graph where nodes represent states and
weighted edges represent potential transitions between states.

Search algorithms can be broadly classified into offline
and online algorithms. A way to understand the differences
between these two classes is by thinking in terms of an agent
that lives in the state space; the agent begins at the initial state
and wants to go to the goal state. In the offline approach the
agent finds a complete solution to reach the goal in what is
called a planning stage, and then executes the corresponding
actions. Dijkstra and A* are two classic offline search al-
gorithms. Online approaches, on the other hand, interleave
planning and execution of actions.

In offline searching the agent classifies the states into three
different classes: explored states, unexplored states, and the
fringe. At each iteration, the agent selects one node of the
fringe (the criteria used to select the node from the fringe
are what differentiate the different offline search algorithms).
This node becomes an explored node, and all its successors
are added to the fringe. The planning stops when the goal
state is removed from the fringe. Figure 1(a) shows an exam-
ple of a state space during an intermediate step of the plan-
ning.

S

G

(a)

S
G

(b)
Fig. 1: Examples of searching in a state space. S and G are the start
and goal state, respectively. (a) Offline search during an intermediate
stage of execution: explored, unexplored, and fringe states are repre-
sented by triangles, squares, and circles, respectively. (b) Evolution
of online search. Execution depicted from left to right. A dot indi-
cates the current state. Bold circles and edges represent visited states
and transitions, respectively. Dotted lines represent unexplored re-
gions.

As explained above, offline search algorithms must keep a
list of the fringe states. When the branching factor (the num-
ber of successors for each state) is too large, this approach is
unfeasible; colloquially, it said that “you run out of space be-
fore you run out of time”. Online search algorithms are able
to overcome situations like this one since they have memory
requirements that do not depend on the number of states or
the branching factor.

In online search [5] an agent starts by setting its current
state s equal to the start state. Then it performs a local search
among its neighbors and it moves to the state that looks most
promising. It repeats these two steps, planning and execu-
tion, until the current state is equal to the goal state. The
agent uses a value-function u(s) to store its knowledge about
the state space. This function represents the current estimate
of the distance to the goal for each state. The first time the
value-function is evaluated it is set using a heuristic func-
tion h(s) that returns an initial estimate of the distance to the
goal. When the agent moves from the state s to the state s′ it
updates u(s) using the value of u(s′). Note that the heuris-
tic function is fixed, while the value-function changes as the
agent learns about the structure of the state space. Figure 1(b)
shows an instance of online search for a simple state space
with five states.

3. ONLINE SEARCH OMP

Inspired by OMP and search methods in state spaces, we pro-
pose a new algorithm to solve (P0). One way to think about
OMP is that it searches for a support that is able to “explain”
the observation vector y. This search proceeds by adding
one element to the support at a time, and it is not possible
to remove an element once it is added. In other words, OMP
does not have the ability to backtrack. On the other hand,
online search methods are backtracking algorithms that pro-
vide effective mechanisms to search for a solution in a state
space. Our algorithm, dubbed “Online Search OMP” (OS-
OMP), merges the above mentioned approaches. It combines
the greedy addition of indices to the support based on the

value of the residue used in OMP, with the use of a value-
function to represent the accumulated knowledge.1

We adopt the “agent perspective”, typically used in Arti-
ficial Intelligence [4], to explain OS-OMP. Consider an agent
whose state is an index set Γ. The agent can move to any
state corresponding to an index set with one extra element.
It can also move to its predecessor state (it may be useful to
consider this as an “undo” movement). Thus, the successor
function can be written as

succs(Γ) = {Γ′ | Γ′ ⊃ Γ, |Γ′| = |Γ|+1}∪ predecessors(Γ),

where predecessors is a table that keeps track of the state
transitions.

Under this setup, solving (P0) corresponds to finding,
starting at the state Γ = ∅, the Γ with residue 0 and smallest
cardinality. OS-OMP is specified entirely in Algorithm 2. It
starts with an empty table to store the value function u and
another empty table to store the state predecessors. The cur-
rent support is set equal to the empty set. At each iteration it
checks to see whether the current Γ exists in u. If it does not,
this Γ is added to the table with a value equal to the heuristic
function h(Γ) (lines 3 to 5). As the heuristic function we use
the norm of the residue corresponding to that support:

h(Γ) = min
z: supp(z)⊆Γ

‖y − Φz‖2. (2)

Note that this is the norm of the residue vector r computed
in the update step of OMP. Also note that since this function
is computed only when a support set does not have an entry
in the value-function table, the computational cost of using
the norm of the residue as a heuristic is reasonable. Then,
OS-OMP computes and stores in the table usuccs the value-
functions for all the successors of Γ (lines 7 to 12). As before,
if there is no entry for a given successor, the value-function
table is initialized using the heuristic function h.

The next steps in the algorithm are based on the follow-
ing observation. As stated by (1), when the new elements
added to the support are selected greedily, the norm of the
residue decays exponentially. This implies that when the sup-
port is not sparse enough, i.e., the estimate is the wrong one,
the reduction in the norm of the residue is very small. This
behavior of the norm of the residue helps us to identify two
search regimes: one during which the norm of the residue de-
cays quickly, and one during which there is little change of
the norm of the residue. We consider this last situation as
an indication that the current Γ is in the wrong region of the
state space and that the algorithm should start backtracking.
OS-OMP computes the difference between the maximum and
the minimum of the value-function evaluated at the succes-
sors of Γ, and compares this difference with a threshold η.
If the difference is above this threshold, Γnew is set equal to
the Γ′ ∈ succs(Γ) with the smallest u(Γ′); otherwise, Γnew

1Note that although methods such CoSaMP [6] and IHT [7] are also able
to remove items from the support, they do this by estimating the complete
support at each iteration, rather than by adding one element at a time.

Algorithm 2 Online Search OMP
input: Φ, y, η > 0, stopping criterion

1: initialize: Γ = ∅, u: empty table, predecessors: empty table
2: while not converged do
3: if Γ /∈ u then
4: u(Γ) = h(Γ)
5: end if
6: usuccs: empty table
7: for Γ′ ∈ succs(Γ) do
8: if Γ′ /∈ u then
9: u(Γ′) = h(Γ′)

10: end if
11: usuccs(Γ′) = u(Γ′)
12: end for
13: if max(usuccs)−min(usuccs)

‖y‖ > η then
14: Γnew = argmin(usuccs)
15: else
16: Γnew = argmin({|Γ′| | Γ′ ∈ succs(Γ)})
17: end if
18: if |Γnew| < |Γ| then
19: u(Γ) = +∞
20: end if
21: if Γnew /∈ predecessors then
22: predecessors(Γnew) = Γ
23: end if
24: Γ = Γnew

25: end while
output: x̂ = argminz: supp(z)⊆Γ ‖y − Φz‖2

is set equal to the support in the successors with the smallest
cardinality (lines 13 to 17).

After OS-OMP selects Γnew, it checks to see if this new
support is a backtrack move. If that is the case, the value-
function of the current Γ is updated to +∞. This guarantees
that the path corresponding to this Γ will not be expanded in
future iterations (lines 18 to 20). Finally, Γnew is added to the
table of predecessors if necessary (lines 21 to 23), and Γ is
updated to its new value.

We continue with an example where OS-OMP works suc-
cessfully but OMP fails. We set the length and sparsity of x
to N = 128 and K = 5, respectively, and the length of y to
M = 19. The matrix Φ has i.i.d. entries drawn from a stan-
dard normal distribution. We compare the evolution of the
norm of the residue between OS-OMP and OMP in Fig. 2.
Note that, as explained in Sec. 2.1, finding a solution with a
residue of norm 0 does not guarantee successful recovery of
x. We observe the predicted exponential decay for OMP. For
OS-OMP, on the other hand, the algorithm is able to detect
that it is going in the wrong direction and backtracks several
times until it finds the correct solution.

4. EXPERIMENTAL RESULTS

In this section we empirically evaluate OS-OMP.2 We also
compare with OMP and A*OMP. For all experiments that
follow we generate, for each value of the sparsity level K,
signals of length N = 128 having K non-zero coefficients
at locations selected uniformly at random. We fix the value
of M and plot the rate of perfect recovery (declared when

2Code available at https://github.com/aweinstein/osomp.

0 10 20 30 40
iteration

0.0

0.2

0.4

0.6

0.8

1.0

re
si

du
e

no
rm

OS-OMP
OMP

Fig. 2: Comparison of the norm of the residue of OMP and OS-
OMP for an instance with N = 128, M = 19 and K = 5. In this
example OMP (green squares) fails to recover x, while OS-OMP
(blue circles) successes.

‖x − x̂‖ ≤ 10−4 and estimated using 500 trials) as a func-
tion of the sparsity level K. For each trial the matrix Φ has
i.i.d. entries drawn from a standard normal distribution. Since
greedy methods are sensitive to the distribution of the non-
zero signal coefficients, we consider three cases, each one
with a different distribution.

In the first experiment we select the amplitude of the non-
zero signal coefficients uniformly at random from the interval
[−2,−1] ∪ [1, 2] and fix the dimension of y to M = 30. Fig-
ure 3(a) shows the results. Both OS-OMP and A*OMP per-
form significantly better than OMP, with OS-OMP perform-
ing slightly better than A*OMP for most values of K.

In the second experiment we fix the magnitudes of the
non-zero signal coefficients to 1 and set their signs uniformly
at random. We fix the dimension of y to M = 30. Figure
3(b) shows the results. As in the previous experiment, both
OS-OMP and A*OMP perform significantly better than OMP.
This time the improvement of OS-OMP over A*OMP is more
significant.

In the third experiment the amplitude of the non-zero sig-
nal coefficients are i.i.d. drawn at random from a standard
normal distribution. We fix the dimension of y to M = 25.
Figure 3(c) shows the results. This time the difference be-
tween the three methods is less significant. OMP is still the
method with the poorest performance. This time A*OMP is
slightly better than OS-OMP.

Finally, we test OS-OMP in a scenario where the obser-
vations are corrupted by additive noise. We set y = Φx + e,
where e is a vector with i.i.d. entries drawn from a zero-mean
normal distribution with standard deviation set to σ = 0.1. To
handle this situation, we only need to modify the algorithm to
stop when the norm of the residual is smaller than the noise
level. We select the amplitude of the non-zero signal coeffi-
cients uniformly at random from the interval [−2,−1]∪ [1, 2]
and fix the dimension of y to M = 30. Figure 3(d) shows the
results. We observe that OS-OMP performs better than OMP.

Although OS-OMP and A*OMP exhibit similar perfor-
mance in terms of rate of recovery, we must stress the fact that
the execution time of OS-OMP is significantly faster, roughly
by a factor of 20. For instance, to recover a signal of length
N = 128 and sparsity K = 5 from a vector y of length
M = 35 using OS-OMP takes 5 ms, while recovering the

2 3 4 5 6 7 8 9 10
sparsity level K

0.0

0.2

0.4

0.6

0.8

1.0

ra
te

of
re

co
ve

ry

OS-OMP
OMP
A*OMP

(a) Uniform distribution

2 3 4 5 6 7 8 9 10
sparsity level K

0.0

0.2

0.4

0.6

0.8

1.0

ra
te

of
re

co
ve

ry

OS-OMP
OMP
A*OMP

(b) Binary distribution

2 3 4 5 6 7 8 9 10
sparsity level K

0.0

0.2

0.4

0.6

0.8

1.0

ra
te

of
re

co
ve

ry

OS-OMP
OMP
A*OMP

(c) Normal distribution

1 2 3 4 5 6 7 8 9 10
sparsity level K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

re
la

tiv
e
` 2

er
ro

r

OS-OMP
OMP

(d) Noisy observations
Fig. 3: Experimental results. (a, b, c) Rate of perfect recovery as a
function of the sparsity level K using OS-OMP, A*OMP, and OMP
for three different distributions of the non-zero coefficients. (d) Rel-
ative `2 error for the recovery of x from noisy observations.

same signal using A*OMP takes 140 ms. OMP takes 3 ms to
recover the same signal.

5. CONCLUSIONS

We have presented a new method, called OS-OMP, for re-
covering a sparse vector x. The new algorithm merges ideas
from greedy techniques and from online search methods. OS-
OMP performs significantly better than OMP without incur-
ring a significant extra computational load. It has a similar
performance to A*OMP, a method also inspired by search al-
gorithms, but it has a much faster execution time.

Future work will include theoretical analysis of OS-OMP.
We will also study the possibility of adjusting the parameter
η automatically.

6. REFERENCES

[1] J. A. Tropp, “Greed is Good: Algorithmic Results for Sparse Approxi-
mation,” IEEE Trans. on Info. Theory, vol. 50, no. 10, pp. 2231–2242,
Oct. 2004.

[2] N. B. Karahanoğlu and H. Erdoğan, “A* Orthogonal Matching Pursuit:
Best-First Search for Compressed Sensing Signal Recovery,” Submitted
to Elsevier Digital Signal Processing, 2011.

[3] M. Elad, Sparse and Redundant Representations, Springer New York,
New York, NY, 2010.

[4] S. J. Russel and P. Norvig, Artificial Intelligence: A Modern Approach
(3rd Edition), Prentice Hall, Englewood Cliffs, 2009.

[5] S. Koenig, “Exploring unknown environments with real-time search or
reinforcement learning,” in Advances in Neural Information Processing
Systems (NIPS), 1999.

[6] D. Needell and J.A. Tropp, “Cosamp: Iterative signal recovery from
incomplete and inaccurate samples,” Applied and Computational Har-
monic Analysis, vol. 26, no. 3, 2009.

[7] T. Blumensath and M.E. Davies, “A simple, efficient and near optimal
algorithm for compressed sensing,” in IEEE Int. Conf. on Acoustics,
Speech and Signal Processing, 2009.

